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On the physics of state transition 
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Princeton, NJ 08544, USA 

Received 4 May 1982, in final form 20 December 1982 

Abstract. In the melting of a solid crystalline medium, the shear modulus changes abruptly 
to zero. This behaviour can be explained firstly by representing the stress tensor in  terms 
of the correlation function and the potential of interaction of the system and secondly by 
using an extension of Ruelle’s criterion for thermodynamic stability. 

1. Introduction 

It has sometimes been conjectured that the phenomenon of state transition from solid 
to liquid is simply the spontaneous production of dislocation which becomes thermo- 
dynamically feasible at a specific temperature and during a dilating mode (see, e.g., 
Kosterlitz and Thouless 1973, Nelson and Halperin 1979, Young 1979). The stated 
conjecture encompasses essentially both the discrete (atomic) aspect of dislocation 
and the continuum (phenomenological) aspect of temperature and dilatation. Initial 
thoughts on the melting phenomenon within the scope of this modern and well accepted 
view may be traced back to Born (1939) who suggested that the fluidity of a melt 
occurs when one of the elastic moduli vanishes. Observations have also shown that, 
at the melting point, the shear modulus of perfect crystals jumps discontinuously to 
zero in the fluid (figure 1). Since dilatation is an integrated consequence of discrete 
deformation of lattice structure, the proliferation of microscopic grain boundaries in 
a crystal has a direct influence on the behaviour of the macroscopic scale of displace- 
ment. Therefore, the attempt to use defects to explain phase transitions in three 
dimensions is not completely unrelated to the abrupt change in the shear modulus. 
In other words, if the discrete formalism reflected through the study of correlation 
functions can be used to cast a theory of melting, such a theory would not exclude 
the defect-mediated phase transition hypothesis as another supporting point of view 
put forth by Mott and Gurney (1939). More generally, the incorporation of micro- 
scopic geometry changes to the macroscopic phase behaviour of crystals opens a novel 
research area which has great accessibility to recent development in the mathematics 
of singularities. Along the same line of thought, the idea of superfluid transition by 
proliferation of vortex lines was also advanced by Feynman (1955). For comprehensive 
literature on the subject one may refer to the recent reviews by Coterill (1980) and 
Halperin (1981). 
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Figure 1. Shear modulus plotted against dilatation 
6, both as a function of temperature (adapted from 
Tallon 1979). 

From a different perspective, the study of phase transition in crystals can be 
regarded as an approximate theory for the melting of a general class of solids (Ruelle 
1977b). This conceptual approximation relies largely on the combination of distinct 
crystalline structures to reconstruct the thermomechanical behaviour of the solid 
material under consideration. If the idealised reconstruction using surrogate lattice 
media can reproduce the true medium in a quantitative sense and under strictly defined 
mathematical conditions, the theoretical implications derived from the study of these 
structurally simpler models will provide a more precise means to estimate the complex 
phenomenon of melting, especially at critical limits of material behaviour. 

In this technical communication, we restrict our attention to the problem of the 
melting of monoatomic solid crystals. The phase transition in such media is of first 
order, and the Helmholtz free energy is discontinuous at the critical threshold of 
motion. It is relevant to point out that from a continuum mechanics perspective, a 
conventional stability analysis of the stated problem is not applicable (Ericksen 1980). 
Herein we will propose the use of correlation functions to explain the abrupt behaviour 
of the shear moduli. Our arguments will be based on the choice of a measure of the 
spread of fluctuations, on the relationship between the elastic moduli and the correla- 
tion and potential functions of the system, and on the continuum extension of Ruelle’s 
stability criterion. These arguments are feasible because of recent work by the authors 
on the structural implications of the stress representation (Abi-Ghanem and Nguyen 
1982, 1983). 
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2. Measure of disorder 

In statistical mechanics, a correlation function of the system may be viewed as a 
macroscopic indicator of microscopic irregularities. Experimentally, such a function 
may be determined by x-ray diffraction. At the phase transition point, the correlation 
function behaves discontinuously and possesses new qualitative properties. As an 
indicator of disorder (Tabor 1981), it will signify the domain of validity of a continuous 
description for a deforming medium. 

3. Relationship between the elastic moduli and the correlation function 

In the following, we will review briefly the method that leads to the establishment of 
a relationship between the linear elastic moduli, the correlation functions and the 
interatomic pair potential. For more details, see Abi-Ghanem and Nguyen (1982). 

In linear elasticity, the stress tensor T k l  is expressed in terms of the strain tensor 
E , ~  as 

Tkl = K k l ( T * - T ) + C l l k E , J ,  i, j ,  k ,  I = 1, 2, 3 (1) 

where E,,  = ; ( u ~ , ~  + u ~ , ~ ) ,  ( U , )  and ( u , , ~ )  are the displacement field and its gradient, respec- 
tively: ( T * - T )  is the infinitesimal temperature change, CzJkl and K k l  are the elastic 
and stress-temperature moduli, respectively. Repeating indices denote the summation 
notation. 

Let V be a closed portion of a material body. The statistical mechanics stress 
tensor is given by 

k ,  I ,  m = 1 ,2 ,  3, where a k l  is the Kronecker symbol, r = l ( x l ,  x2, xg)l, ( X k )  is the local 
vectorial distance with origin ( q k ) ,  g 2 ( x k ,  q k ;  T )  " F Z ( ( q k ) - ; ( x k ) ,  ( q k )  + i ( x k ) ;  T )  and 
f l ( @  ; T )  are the two-particle and one-particle distribution functions, respectively 
(parametrised by the thermodynamic variables and necessarily form invariant under 
the symmetries of the crystalline structure), U is the specific volume, T is the absolute 
temperature, k is the Boltzmann constant, and d ( r )  is the interaction potential of the 
particles; the prime denotes the derivative dldr. 

The stress tensor expression given in (1) will result from the relation 

T k l  = r?l - r k l  (3) 
where the asterisk denotes the post-deformation quantity of r k /  with respect to 
additional change in external factors. 

On the other hand the constitutive theory in the gradient approximation of the 
displacement field leads to the following representation of the distribution functions: 

(4a 1 
(5a 1 

fT(q:; T*)  = F ( Y ( V ) ;  q m ,  T )  

gT (x:, 4: ; T*)  = G(T(  VI; X m ,  qm, T )  
where the notation 

T ( V ' )  Ql.l(qL), (T*-  T)(qL)l: ( q L ) s  V ' G  V )  
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designates a field of displacement and temperature gradients over the space V', F 
and G are functionals satisfying 

F({(O, 0)l; q m ,  T )  'fl(4m ; T )  

G({(O,O)); xm, 4mr T )  g2(xm, qm ; TI. 
For the local approximation T({(qm)}) of 3 ( V ) ,  (4a)  and ( 5 a )  become 

fT(q?;  T*)  = F + ( a F / a u , , J ) T ~ l , j  +(aF/aT)(s,)(T*- T )  

gT(x*,, q?;  T * ) = G  +(aG/au,,,).ru,., +(aG/aT)(q,)(T*-T); 

(46 1 
(56) 

the terms on the right-hand side of (46) and (56) are evaluated at the values of the 
argument equal to ((0,O); qm, T )  and ((0,O); x,, qm, T ) ,  respectively. Subsequently 
this short-hand notation will be used. 

From (1) and (3) we obtain the elastic modulus formula 

+36Ij 1 Jv;d'(r)Gxkxi 1 dx, dx2 dx3 

Hence the Helmholtz free energy $ becomes 

with the assumption that the initial density has the form 

P O  = (m/o IF 
where m is the mass of one pcrticle. 
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4. Extended Ruelle’s stability criterion for a continuum 

From a discrete system point of view, Ruelle (1977a) gave a definition of the stability 
of an interaction and an equivalent statement concerning the convergence of the grand 
partition. Physically, his condition aims at preventing the collapse of infinitely many 
particles into a bounded region by choice of an appropriate type of interaction. More 
rigorously, the residual energy resulting from the repulsive and attractive forces 
between the particles of the system must possess a lower bound to ensure thermo- 
dynamic stability. We will present his criterion in an integral form using the two- 
particle distribution as a weighting function. Our intention is to account for the 
manner in which the energy is shared by different parts of the medium. Immediate 
structural implications will follow. 

Definition. Let q5 be a real symmetric upper semi-continuous function V, E R ’. We 
say that the interaction 4 is stable if 

vol(V) q5(r)G dxl dx2dx3>0  I, 
holds for every V c Vo with a bounded measure vol( V ) .  

Strictly speaking, the interaction stability implies that the right-hand side of (8) 
should denote the minimum internal energy stored in the system. This is a non-positive 
quantity which may be regarded as constant under the thermomechanical setting of 
our analysis. The constant value arises from the fact that, as the system approaches 
instability, the internal energy approaches a negative limit from above. In this sense, 
such a constant represents the self-energy of the crystalline system locally. Con- 
sequently we may adopt the above form of inequality without loss of clarity. Further- 
more, we notice that when G is a sum of the Dirac distribution function supported 
by the set of equilibrium positions, (8) indicates that the potentials are positive definite 
and this fact is well recognised in lattice dynamics. 

We now establish the restrictions on G. We start by expressing (8) in the coordinates 
of the deformed configuration, denoted by the asterisk of the solid body and then use 
the estimates 

(9) vol( V * )  --. vol( V)( 1 + U[,[ ) 

4(r*)  = 4 ( r )  + r ~ l x l x ~ u l , J ~ ’ ( r ~  +4r-2Xlx,xmxnul,,um,.4ff(r) (10) 
where the double prime denotes dZ/dr2. Thus, we obtain 

or 



3406 G VAbi-Ghanem and V VNguyen 

1 +IL,T;id"(r)xxjx..xnG 1 dxl dx2 dx3 

where, at most, quadratic terms of the displacement and temperature gradients 
variables are retained. 

The latter inequality is valid for arbitrary small values of (T* - T ) ,  ui,j and, in view 
of the internal energy approaching the self-energy near the thermodynamical instability 
as mentioned earlier, for all V c Vo, it leads to 

IV,d(r)(=)  dxl dx2dx3+2Sl, d ( r ) G  dxl dxZ dx3 
aut,, T 

1 
--d'(r)xixiG dxl dx2 dx3 = 0 

+ I,. r 

for all i, j ,  m, n = 1,2 ,  3 .  
From the above independent relations, some properties of the two-particle distribu- 

tion function may be observed. Firstly, the correlation function is a priori susceptible 
to the nature of the local law of interaction; while it provides a structural description 
of the lattice, it will also try to adapt itself to any qualitative change in the potential 
function and will recast the system into a new and stable geometry. Secondly, the 
aforementioned restrictions are of a global type and a new mode of interaction would 
necessarily invalidate them. Finally, at a critical point the mode of behaviour of G 
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can be classified with respect to the external parameters. Both the potential and 
correlation functions may be approximated by stable unfoldings, possibly of different 
topological structures. An abrupt change of the energy level causes the discontinuity 
of the correlation function. Whilst the reverse is not true, and such a case occurs if 
the solid material undergoes a plastic deformation instead of melting, it can still be 
concluded that a singular mode of response of G is a necessary and sufficient condition 
for a global or local disorder. From this discussion and Thom's (1982) hypothesis of 
local state, we conjecture the following: the degree of determinism of a process is 
linked to the coupling nature of the local potential and the geometry of the correlation 
function. This geometry and the global energy of the system may be regarded as 
coexisting entities which complement one another and together give a unique signature 
to the medium. 

5. Melting of a crystalline solid 

To obtain a quantitative evaluation of the moduli at the onset of melting, we use the 
fact that a simple fluid is a material whose isotropy group is the full unimodular group 
(Truesdell 1966). Thus, we conclude the disappearance of (12). An illustration is 
now given for an isotropic elastic medium. 

In the spherical coordinates, (12) takes the following form 

lo' rZ4( r )g ( r ;  T, v )  dr > O  6,' r24(r)($) dr > O  
( 4 m  I 

IoR r2&(r)g(r;  T, u )  dr>O 

IoR r '4 (r ) (g) dr > 0 
( 4 m  1 

3 JoR r 2 4 j r ) ( E ) =  dr + 6  loR r24( r )g( r ;  T, U )  dr t r34 ' ( r )g(r ;  T, V )  dr = O  (13c) 6' 

where R is the radius of the sphere V ;  G and its derivatives are evaluated at 
[(O, 0); r, T, U], and G[(O, 0 ) ;  r, T, t ~ ] = g ( r ;  T, U). 

The Lame constants are expressed by 

(14a 

(146 



3408 G VAbi-Ghanem and V VNguyen 

and the bulk modulus becomes 

K = A  +$CL 

= k ' [ F  - U (9) -$ jOm r 3 d f ( r ) g ( r ;  T, U )  dr r 4 d f f ( r ) g ( r ;  T, U )  dr. 
U 

(15) 

At the melting temperature, equations (13) are reduced to equalities. In free thermal 
expansion of the body ui,i is a linear function of (T* - T) and consequently the shear 
modulus CL vanishes. Physically the body does not sustain any shear, and this new 
state of the medium is, in fact, a characteristic of simple liquids. 

6. Conclusion 

The geometry of the correlation function determines the type of singular response of 
a medium. At the critical threshold of motion, it is possible to characterise the direction 
of the evolution of the system to a new state and, by using the extended stability 
criterion, to evaluate the elastic moduli. 

In a forthcoming paper we will apply the concept presented to investigate the onset 
of irregular behaviour in solids. 
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